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Synthesis and Crystal Structure of SrV4O9 in a Metastable State
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In the SrO+VO2 phase diagram there exists no SrV4O9 phase
corresponding to the CaV4O9 phase in the CaO+VO2 diagram
and synthesis of SrV4O9 has not been reported so far. We are
successful in hydrothermal synthesis of the synthesis of SrV4O9:
hydrothermal treatment of SrCl2+NaVO3+(CH3)4NCl solutions
above 3003C yielded light-green plate crystals identi5ed as
SrV4O9. Single-crystal X-ray di4ractometry con5rmed the
CaV4O9-type structure consisting of V4O9 layers and interstitial
Sr atoms: P4/n, a 5 8.379(2) As , c 5 5.259(3) As , and Z 5 2. The
re5nements based on 826 re6ections with I > 3r(I) converged to
R 5 0.039 and Rw 5 0.048. Temperature variation of magnetic
susceptibility exhibits a low-dimensional feature of a broad max-
imum around 100 K, just like that of CaV4O9. Single crystals
of CaV4O9 were similarly grown in the hydrothermal
CaCl2+NaVO3+(CH3)4NCl system at 2803C and its single-crys-
tal X-ray study was also made to compare with those of
SrV4O9. ( 2000 Academic Press

Key Words: strontium vanadium oxide; hydrothermal syn-
thesis; metastable phase; layered structure; low-dimensional spin
system.

INTRODUCTION

Vanadium oxide compounds with V4` (S"1
2
) ions have

attracted much attention due to their possibility to adopt
layer-type V}O polyhedral frameworks which inherently
exhibit interesting low-dimensional magnetic behavior ori-
ginating from S"1

2
spins. Their magnetic systems are classi-

"ed into several groups such as spin ladder, spin plaquette,
and dimer systems, depending on their structural and mag-
netic properties. Research interest has been accelerated by
the discovery of the spin Peierls transition in a@-NaV

2
O

5
by

Isobe and Ueda (1). The low-dimensional magnetic proper-
ties of AV

2
O

5
with layered structures for A"Na, Cs, Mg,

Li were recently reviewed by Ueda (2). The spin plaquette
system is attributed to other layered structures of AV

3
O

7
for

A"Ca(3), Sr(4), and AV
4
O

9
for A"Ca(5), both of which
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have similar V}O layers consisting of edge-sharing VO
5

square pyramids whose structures look like tiling plaquettes
of VO

4
square bases. The AV

4
O

9
phase appears only for

A"Ca, unlike the AV
3
O

7
phase appearing for A"Ca, Sr

(6, 7): according to the SrO}VO
2

phase diagram, the
stoichiometric composition of SrV

4
O

9
gives a two-phase

state consisting of SrV
5
O

11
and SrV

3
O

7
(6). However,

SrV
4
O

9
of the AV

4
O

9
phase could possibly exist in a meta-

stable state since SrV
3
O

7
of the AV

3
O

7
phase that is struc-

turally related to the AV
4
O

9
phase does exist.

There are several ways to reach metastable compounds:
for example, high-pressure syntheses, soft chemical pro-
cesses, and chemical vapor depositions. Hydrothermal syn-
thesis is one of the soft chemical processes that produce
metastable compounds (8}10) and has an advantage of
giving single crystals suitable for structure determination.
Typical examples are found in the hydrothermal synthesis of
metastable VO

2
phases (11, 12). In the present study we

have applied hydrothermal synthesis to the Sr}V}O system
and succeeded in producing single crystals of metastable
SrV

4
O

9
of the CaV

4
O

9
type. Single crystals of CaV

4
O

9
were

also hydrothermally grown in a similar manner and its
crystallographic data are presented to compare with those
of SrV

4
O

9
.

EXPERIMENTAL

Sample Preparation

Hydrothermal synthesis of SrV
4
O

9
was carried out using

a SrCl
2
}NaVO

3
mixed solution to which tetramethyl am-

monium chloride ((CH
3
)
4
NCl) was added as a reducing

agent from V5` to V4`. An aqueous solution of 0.1 M
SrCl

2
, 0.1 M NaVO

3
, and 0.02 M (CH

3
)
4
NCl were sealed in

a quartz ampoule followed by hydrothermal treatment at
3503C for 48 h. Precipitates consisting of red-brown pow-
ders and light-green plate crystals were "ltered out; the
former was larger in amount than the latter. The light-green
crystals were separated by leaching the red-brown powders
in dilute hydrochloric acid and subsequent ultrasonic puri"-
cation. Powder X-ray di!raction of the light-green crystals



TABLE 1
Experimental and Crystallographic Parameters of SrV4O9 and

CaV4O9

SrV
4
O

9
CaV

4
O

9

Space group P4/n P4/n
a (As ) 8.379(2) 8.327(3)
c (As ) 5.259(3) 5.013(4)
< (As 3) 369.2(2) 347.6(3)
Z 2 2
D

#
(g cm~3) 3.916 3.706

Crystal sizes (mm) 0.35]0.20]0.02 0.20]0.15]0.02
2h

.!9
(deg) 80 80

Scan width, *u (deg) 1.10#0.30 tan h 1.00#0.30 tan h
k (MoKa) (cm~1) 120.6 59.7
Trans. coe!. max/min 0.189/0.702 0.454/0.838
No. of re#ections (I'0) 1241 1154
No. of re#ections (I'3p (I )) 826 722
R

*/5
0.065 0.037

No. of variables 33 33
R/R

8
0.039/0.048 0.037/0.040

*o
.!9@.*/

(e/As 3) 1.13/!0.99 1.61/!1.50

TABLE 2
Atomic Coordinates and Equivalent Temperature Factors

for SrV4O9 and CaV4O9

Atom x y z B
%2

(As 2)

SrV
4
O

9
Sr 0.25 0.25 0.15082(12) 0.721(5)
V 0.15796(6) 0.53784(6) 0.61893(10) 0.594(7)
O(1) 0.0429(2) 0.3566(2) 0.4690(5) 0.66(3)
O(2) 0.1724(3) 0.5096(3) 0.9195(5) 1.23(4)
O(3) 0.25 0.75 0.5 0.68(4)

CaV
4
O

9
Ca 0.25 0.25 0.1673(2) 0.645(8)
V 0.15845(5) 0.53656(5) 0.62521(9) 0.506(6)
O(1) 0.0445(2) 0.3560(2) 0.4629(4) 0.59(3)
O(2) 0.1769(3) 0.5003(3) 0.9407(4) 0.96(3)
O(3) 0.25 0.75 0.5 0.57(3)
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showed an almost identical pattern to that of CaV
4
O

9
(13),

regardless of the peak positions at slightly lower 2h angles.
A crystalline phase of the red-brown powders was identi"ed
to be Sr

2
V
3
O

9
(6, 14). An EDX analysis on the light-green

crystals gave an atomic ratio of Sr/V"1
4
. Consequently, the

light-green crystals are surely a new compound, SrV
4
O

9
.

Single crystals of CaV
4
O

9
were similarly obtained by the

hydrothermal treatment of an aqueous solution of 0.1 M
CaCl

2
, 0.1 M NaVO

3
, and 0.02 M (CH

3
)
4
NCl at 2803C for

48 h, where CaV
3
O

7
crystals were sometimes included as

a minor product. Magnetic susceptibility was measured on
re"ned SrV

4
O

9
crystals by using a SQUID magnetometer.

Single-Crystal X-Ray Diwraction

A single-crystal X-ray di!raction study was made on both
SrV

4
O

9
and CaV

4
O

9
crystals. Selected crystals were moun-

ted on a Rigaku AFC-7R X-ray di!ractometer with mono-
chromatized MoKa radiation. Di!raction data were
collected by the 2h}u scanning method and no signi"cant
intensity #uctuations were detected by monitoring three
standard re#ections every 150 pieces of data. An empirical
absorption correction of the t-scan method was applied on
both crystals and data with I'3p(I ) were used in the
structure re"nements. Data processing and all the structure
determination calculations were carried out by using the
teXsan software package (15).

The space group of SrV
4
O

9
and CaV

4
O

9
was determined

as P4/n, being the same as that reported for CaV
4
O

9
(5). The

unit cell parameters were a"8.379(2) As , c"5.259(3) As ,
and <"369.2(2) As 3 for SrV

4
O

9
and a"8.327(3) As ,

c"5.013(4) As , and <"347.6(3) As 3 for CaV
4
O

9
, which

were obtained from 2h re#ections of 35.23(2h(39.43 for
SrV

4
O

9
and 26.13(2h(29.73 for CaV

4
O

9
. The structure

of CaV
4
O

9
has already been solved by Bouloux and Galy (5)

and its atomic coordinates were successfully employed as
a starting model. The re"nements converged to R"0.039
and R

8
"0.048 for SrV

4
O

9
based on 826 re#ections and

R"0.037 and R
8
"0.040 for CaV

4
O

9
based on 722 re#ec-

tions. The metal sites of Sr, Ca, and V were con"rmed to
have essentially full occupancies. Experimental and crystal-
lographic parameters are listed in Table 1 and atomic coor-
dinates and equivalent temperature factors in Table 2. Our
crystallographic data of CaV

4
O

9
are essentially the same as

those given by Bouloux and Galy (5), but we employ our
data in the following because our esd's of atomic coordi-
nates are reduced by about 1 order of magnitude.

RESULTS AND DISCUSSION

Structures of SrV
4
O

9
and CaV

4
O

9
Figure 1 depicts the structure of SrV

4
O

9
having the

CaV
4
O

9
-type structure. As discussed by Bouloux and Galy

(5), the structure consists of V
4
O

9
layers and interstitial Sr
atoms and the V
4
O

9
layer is made up of VO

5
square pyr-

amids that are linked by sharing edges. Figure 2 shows
a VO

5
square pyramid of SrV

4
O

9
and Table 3 lists V}O

bond distances and O}V}O bond angles in VO
5

square
pyramids and V}V distances between edge-sharing VO

5
square pyramids of both SrV

4
O

9
and CaV

4
O

9
for compari-

son. It is said that their values in Table 3 are practically
indi!erent for both compounds, indicating that the VO

5
square pyramids as well as the V

4
O

9
layers are not altered

by the change of interstitial atoms from Ca to Sr. The slight
expansion of the a axis from CaV

4
O

9
to SrV

4
O

9
by 0.052 As

is mainly caused by the elongation of V}O(1) and V}O(1)i
distances in Table 3 or more directly O(1)}O(1)i edges as
mentioned below.



FIG. 1. Crystal structure of SrV
4
O

9
viewed along (a) [001] and (b)

[010]. Small closed circles denote V atoms in VO
5

square pyramids and
large shaded circles denote interstitial Sr atoms.

FIG. 2. VO
5

square pyramid of SrV
4
O

9
. Large and small circles de-

note O and V atoms, respectively, and numbers indicate V}O bond
distances in As .

TABLE 3
V+O Bond Distances (As ) and O+V+O Angles (deg) of VO5

Square Pyramids and Edge-Sharing V+V Distances (As ) for
SrV4O9 and CaV4O9

SrV
4
O

9
CaV

4
O

9

V}O(1) 1.964(2) 1.955(3)
V}O(1)i 1.962(2) 1.955(3)
V}O(1)ii 1.957(2) 1.963(3)
V}O(2) 1.603(3) 1.617(3)
V}O(3) 2.0362(7) 2.0331(9)
O(1)}V}O(1)i 89.3(1) 88.3(1)
O(1)}V}O(1)ii 80.4(1) 80.7(1)
O(1)}V}O(2) 108.6(1) 108.07(1)
O(1)}V}O(3)i 137.53(9) 136.53(9)
O(1)i}V}O(1)ii 142.23(6) 142.01(6)
O(1)i}V}O(2) 106.3(1) 105.2(1)
O(1)i}V}O(3) 81.73(7) 81.83(7)
O(1)ii}V}O(2) 111.4(1) 112.8(1)
O(1)ii}V}O(3) 81.87(7) 81.66(7)
O(2)}V}O(3) 113.8(1) 115.4(1)
V}Viii 2.996(1) 2.985(2)
V}Viv 3.012(1) 3.009(1)

Note. Symmetry codes: iy, 1
2
!x, z; ii!x, 1!y, 1!z; iii!x, 1!y,

1!z; iv1!y, 1
2
#x, 1!z.
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Interstitial Sr and Ca atoms reside in interlayer space,
being coordinated by eight oxygens of the V

4
O

9
frameworks

forming SrO
8

and CaO
8

polyhedra as depicted in Fig. 3 for
a SrO

8
polyhedron: four O(1) bridging oxygens on one side

and four O(2) apical oxygens on the opposite side. The Sr,
Ca}O bond distances and O(1)}O(1) and O(2)}O(2) edge
distances are listed in Table 4. The expansion of bond
distances from CaO

8
to SrO

8
polyhedron are 0.141 As in

Sr}O(1) and 0.125 As in Sr}O(2), as estimated from the
increases in ionic radii of 0.14 As from Ca2` (1.12 As ) to Sr2`
(1.26 As ) (16), which results in the elongation of the c axis
(0.246 As ) from CaV

4
O

9
to SrV

4
O

9
. It is also noted that the

increase of the O(1)}O(1) edge by 0.037 As from CaO
8

to
SrO

8
polyhedron causes the elongation of the a axis

(0.052 As ) and of the V}O(1) bond distances.
Hydrothermal Synthesis of Metastable SrV
4
O

9
The equilibrium phase diagram of the Sr}VO

2
}V

2
O

5
system was studied by Bouloux et al. (6), where there exist
three strontium vanadium oxides on the SrO}VO

2
side of

the triangular diagram, namely, SrVO
3
, SrV

3
O

7
, and



FIG. 3. SrO
8

polyhedron of SrV
4
O

9
. Large and small circles denote

O and Sr atoms.
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SrV
5
O

11
. Therefore, SrV

4
O

9
is not a stable phase and the

formation of SrV
4
O

9
by solid-state reactions has never been

reported. Actually, the solid-state reaction of SrVO
3

and
VO

2
in an evacuated silica ampoule at an atomic ratio of

Sr/V"1
4

yielded biphasic products consisting of SrV
3
O

7
and SrV

5
O

11
phases (17), consistent with the phase diagram

by Bouloux et al. (6). This presents a contrast to the
CaO}VO

2
system where the CaV

4
O

9
phase exists in a stable

state, as do the CaVO
3
, CaV

2
O

5
, and CaV

3
O

7
phases (6).

CaV
3
O

7
and CaV

4
O

9
adopt similar layered structures

with V
3
O

7
and V

4
O

9
layers, respectively, and both V}O

layers are made of VO
5
square pyramids by sharing edges in

a similar manner (3, 5). Taking into account that SrV
3
O

7
isomorphous with CaV

3
O

7
can exist and that CaV

4
O

9
is

structurally related to CaV
3
O

7
, SrV

4
O

9
isomorphous with

CaV
4
O

9
could possibly exist in a metastable state. More-

over, we found in the present study that CaV
4
O

9
and

CaV
3
O

7
crystals are hydrothermally synthesized in the

CaCl
2
}NaVO

3
}(CH

3
)
4
NCl system. The trial of substituting
TABLE 4
Sr,Ca+O Bond Distances (As ) and O+O Edge Distances (As )

of SrO8 and CaO8 Polyhedra

SrO
8

CaO
8

Sr,Ca}O(1)i, ii, iii, iv 2.571(3) 2.430(3)
Sr,Ca}O(2)v,vi,vii,viii 2.576(3) 2.451(3)
O(1)i}O(1)iii,vi 2.760(3) 2.723(3)
O(2)v}O(2)vii,viii 3.211(4) 3.071(4)

Note. Symmetry codes: ix, y, z; ii1
2
!x, 1

2
!y, z; iii1

2
!y, x, z; ivy, 1

2
!x,

z; vx, y, z!1; vi1
2
!x, 1

2
!y, z!1; vii1

2
!y, x, z!1; viiiy, 1

2
!x, z!1.
Ca by Sr, namely, the hydrothermal SrCl
2
}NaVO

3
}

(CH
3
)
4
NCl system, successfully produced SrV

4
O

9
crystals

in a metastable state. In the hydrothermal SrCl
2
}NaVO

3
}

(CH
3
)
4
NCl system, reaction temperatures are crucial to

obtain SrV
4
O

9
crystals which should be well above 3003C:

lower reaction temperatures yielded Sr
0.5

V
2
O

5
crystals with

the d-type layered bronze structure (6, 18). Unlike the hy-
drothermal CaCl

2
}NaVO

3
}(CH

3
)
4
NCl system, the present

SrCl
2
}NaVO

3
}(CH

3
)
4
NCl system did not produce SrV

3
O

7
crystals that are in a thermodynamically stable state. Trials
of hydrothermal synthesis of other thermodynamically
stable MV

n
O

2n`1
phases (M"Ca, Sr) such as MVO

3
,

CaV
2
O

5
, and SrV

5
O

11
were also unsuccessful.

Magnetic Property of SrV
4
O

9
As described in the preceding section, CaV

4
O

9
has drawn

much attention due to its magnetic property originated
from V4` (S"1

2
) ions in a two-dimensional V

4
O

9
layer (19).

This magnetic system is called a two-dimensional spin
system with a spin gap or speci"cally from a structural
viewpoint a spin-plaquette system. As usually found in low-
dimensional spin-gap systems, a magnetic susceptibility vs
temperature curve of CaV

4
O

9
shows a broad maximum

around 100 K and a tendency of directing toward zero
susceptibility at ¹"0 K (19). It is of interest of measure
a magnetic susceptibility of the new compound SrV

4
O

9
with

reference to that of CaV
4
O

9
. Figure 4 shows a magnetic
FIG. 4. Magnetic susceptibility vs temperature curve of SrV
4
O

9
in an

applied "eld of 0.05 T.
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susceptibility vs temperature curve of SrV
4
O

9
in an applied

"eld of 0.05 T. The curve clearly exhibits a broad maximum
around 100 K just like that of CaV

4
O

9
, indicating that

SrV
4
O

9
is also a member of a two-dimensional spin system

with a spin gap. Since no signi"cant di!erence in magnetic
susceptibility vs temperature curves between CaV

4
O

9
and

SrV
4
O

9
is detected, their exchange interactions of edge-

sharing V}V pairs should almost be equal, as expected from
the V}V pair distances in Table 3, exhibiting nearly the
same values for both compounds. Quantitative analysis and
further experiments to elucidate the magnetic properties of
SrV

4
O

9
are in progress and the results will be reported

elsewhere.
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